
Critical behaviour of the irreversible phase transitions of a dimer-monomer process on fractal

media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 431

(http://iopscience.iop.org/0305-4470/27/2/026)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 27 (1994) 431436. Printed in the UK 

Critical behaviour of the irreversible phase transitions of a 
dimer-monomer process on fractal media 

Ezeqniel V Albano 
Instituto de Investigaciones Fisicoquimicas Te6rias y Aplicadas (INIFTA), Facultad de 
Ciencias Exactas, Universidad Nacional de La Plata. Sucursal4, Cadla de Correo 16, 
(1900) La Plata, Argentina 

Received 19 April 1993, in final form 1 October 1993 

Absbsct The dynamic critical behaviour of a dimer-monomer surface reaction process (the 
ZCIB model) of the type &a,+ 8 - A B  is studied on two different Iractals, namely a Sierpinski 
carpet and pmolating clusters. which have almost the same fractal dimension &z 1.89. 
In both surfaces, the model exhibits two continuous irreversible phase transitions. For the 
Sierpinski carpet the values of the critical exponents interpolate between those of directed 
percolation in 1 + I and I f 2  dimensions. Results corresponding to percolating clusters are 
not conclusive enough to assign the universality class of the model. 

1. Inhoduction 

Irreversible phase transitions (rms) occurring in surface reaction processes have been 
studied intensively during the last few years. Among others, the~model proposed by 
Ziff, Gulari and Barshad (ZGB) [l] for the dimer-monomer process of the type 
&4z+B-+AB; which may apply to the oxidation of carbon monoxide [2], i.e. BECO, 
Az=Oz and AB=COZ; has received considerable attention [ 1-16]. The impingement 
rates of the reactants are always normalized so thatpR+pB= 1. B-species arrive to the 
surface at rate p, and adsorb if they encounter a vacant site. A2-molecules arrive at a 
rate 1 -pB, and adsorb if they encounter a nearest-neighbour pair of vacant sites. A 
and B-species adsorbed at neighbouring sites react instantly to form AB, which desorbs 
leaving two vacant sites on the surface. Therefore p, is the only parameter of the 
model. The most distinctive features of this model, as studied using homogeneous two- 
dimensional surfaces with fractal dimension &=2, are as follows: a second-order 
(continuous) ~m from a reactive steady state to an A-poisoned state asp, drops below 
plaS0.389 [l, 31; and a first-order (discontinuous) IPT to a B-poisoned state as pa 
increases above p2,r0.525 [1,4, 51. Further details on the ZGB model do not need to 
be repeated here~since they have been published previously [l-Mj. 

Meakin et a1 [3] have simulated the ZGB model in one dimension (DF= I), showing 
that the finite width reaction window between the critical pointsp,, and p2,, found in 
two dimensions, collapses into a zero width reaction window for DF= 1. Simulations 
performed using incipient percolating clusters (DF= 1.89) as substrata also show the 
existence of a finite reaction window between poisoned states, but unlike the results 
obtained for D F = ~  the rm at p 2 ~  becomes of second order [9-121. The ZGB model 
simulated on a Sierpinski carpet (DF--1.89) also exhibits two second order IPTS, but 
the critical points are different from those reported for a percolating cluster of almost 
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the same fractal dimension 1131. The existence of the second-order rm at pZ8 in the 
Sierpinski carpet is under debate since Mai et a1 [ 141 reported a first-order tn. 

It is known that the continuous IFT of the ZGB model belongs to the same universality 
class as directed percolation (DP) or Reggeon field theory [15, 161. So far it seems that 
the critical behaviour of the model depends solely on the dimensionality. Motivated by 
this evidence Jensen 1171 has studied, on the Sierpinski carpet, a simple one-component 
lattice model with spontaneous annihilation and autocatalytic creation of particles. 
Dynamic critical exponents obtained on Sierpinski carpets (1 < DF < 2) and reported 
by Jensen [I71 interpolate very nicely between the values corresponding to one- and 
two-dimensional lattices. This results suggests that continuous i n s  belong to the univer- 
sality class of DF+ 1 DP [17]. 

Based on these results, the purpose of the present work is to determine dynamic 
critical exponents of the two continuous IPTS exhibited by the ZGB model on both the 
Sierpinski carpet, i.e. the same substratum used by Jensen [ 171, and incipient percolating 
clusters. This study would allow us to find out the universality class of the transitions. 
Interest in this study also arises from the fact that both fractals have almost the same 
fractal dimension ( D F E  1.89) but, on the one hand the Sierpinski carpet is a determin- 
istic structure while on the other hand an incipient percolating cluster is a random 
aggregate [IS] and consequently they have different physical and geometrical 
properties,. 

2. Dynamic critical bebaviour 

It has been demonstrated that a fruitful way to test the universality class of irreversible 
reaction systems is to evaluate exponents related to the time-dependent critical behav- 
iour of the process [4,5, 16, 171. The basic idea is to start from configuration closest 
to the poisoned state and then follow the time evolution of the system. For this purpose 
we begin with the fractal lattices completely covered with A (@-species close to plS 
( P ~ ~ ) ,  respectively, except for a blob of empty sites. In fact, due to the disordered 
structure of the substratum a group of N. empty sites, with 2<N.<9, are selected close 
to the centre of the cluster. 

The measured quantities are: (i) the survival probability S(t) ,  that is, the probability 
that the sample was not poisoned after t time steps; and (ii) the average number of 
empty sites N(t) .  Lattice sues are selected large enough to avoid empty sites arriving 
at the boundary, that is L=243 and L=IOO for Sierpinski carpets and percolating 
clusters, respectively. Averages are taken over 5 x 10' different samples and runs are 
performed up to t = 5  x IO'. Further details on this kind of time-dependent simulation 
can be found in references [4, 5, 16, 171. 

Just at the critical point it is expected that the following scaling laws should hold 
t4,5,16,171 

S(t)  oc t -6 (1) 

N(1) a F. (2) 

and 

Therefore, within the asymptotical regime, log-log plots of S(t)  and N(r)  versus I 
will exhibit a straightline behaviour at the critical point. The curves will show curvature 
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when pB is different from the critical value. This fact makes it possible to obtain precise 
estimates ofpl; andp2B [4,5,16,17]. 

3. Results and discussion 

Results are obtained by means of Monte Carlo simulations in the square lattice of side 
L=243 (L= 100) and averages are taken over 5 x IO4 (1 x IO4) different samples for 
Sierpinski carpets (percolating clusters), respectively. In spite of the fact that fluctua- 
tions of the measured quantities should be larger for reactions on percolating clusters, 
results for these surfaces have poorer statistics because tbe generation of such clusters 
is quite time consuming. 

Figure I(a) and l(b) show log-log plots of S(t) and N ( t )  versus t ,  respectively. 
Results are shown for the Sierpinski carpet at plBe0.3815 and percolating clusters at 
~ ~ ~ r z 0 . 3 4 4 .  The log-log plot of N(r)  versus f for percolating clusters atpB=0.343 (PE=  

0.345) veers downward (upward). respectively, sugge~tingp~~e0.344 f 0.001. Neverthe- 
less, from figure I(&) it follows that the asymptotic behaviour of N ( f )  for percolating 
clusters can hardly be appreciated in spite of the fact that data is taken up to f = 5 x lo’. 
So, for this case r j  has been estimated within the interval 1 x 1O3<t<5 x IO’. The 
estimates of 6 and r j  are shown in table 1. 

Results for S( f )  and N ( t )  obtained for the Sierpinski carpet at p2,-0.4485 and 
percolating clusters atp2B.-0.3740 are shown in figures 2(a) and 2@), respectively. The 
estimates of 6 and r j  are shown in table 1. Determination of both the critical point and 
the critical exponents is more difficult in simulations of the ZGB model on percolating 
clusters than on the Sierpinski carpet. This fact could be due, on the one hand, to the 
lack of appropriate statistics and on the other hand, because the asymptotic regime is 
only reached after longer times. The behaviour of 6 at pzB for percolating clusters is 
quite surprising because at early times one obtains 6eO.38 fO.02, i.e. a value which is 
in agreement with previously determined exponents (see table 1). Nevertheless, for 
t > l  x lo3 the curve can be well fitted by Se0.16f0.01, i.e. a value which may corre- 
spond to DP in 1 + 1 dimensions. 

4. Conclusions 

The exponents 6 and r j  for the ZGB model simulated on the Sierpinski carpet and for 
both IPTS are in good agreement with the values reported by Jensen 1171 for a one- 
component model on the same fractal (see table 1). Furthermore, the exponents interpo- 
lates between those characteristic of DP in 1 + 1 and 2+ 1 dimensions. On the other 
hand, results obtained simulating the ZGB model on random fractals (percolation clus- 
ters) which have almost the same fractal’ dimension as the Sierpinski carpet are not 
conclusive enough to determine if the universality class of the model solely depends on 
the fractal dimension of the underlaying surface. In spite of this shortcoming, the results 
show that the first-order IPT of the ZGB model at pzS characteristic of &=2, becomes 
of second order for DFz1.9. Further extensive simulations will be necessary in order 
to determine more precisely the critical exponents of both continuous IPTS of the ZGB 
model on the random fractal. 
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Figure 1. Log-log plots of S(t) (U )  and N(1) (h)  versus 1, Results areshown forthcSierpinski 
carpet (0) atpL.=0.381S and percolatingclusters ( 0 )  atp,.=0.3440. 
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Figure 2. Log-log plots of S(f) (U )  and N(f) (b) versus 1. Results are shown for the Sierpinski 
carpet (0) atp2,=0.4485 and percolatingclusters (a) at p2,=0.3740. 
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Table 1. List of critical exponents 6 and 9 dehed  according io equations ( I )  and (2). 
nspedively. op~directed percolation in 2 + I and 1 + 1 dimensions, sc=Sierpinski carpet, 
IPC- incipient percolating clusters, ic=on&cr"onent model of Jensen [17] and 
PW -present work. (a) and (b) corresponds te estimations of 6 for t < IO' and f > IO', 
respectively. For the FW, error bars merely reflect the statistical errors of the least square 
fits. 

Model s n References 

DP in ( I  + l)D 
ZGE on IPC atpla  
ZGE on IPC at p a  

ZGB on sc at p l a  
ZGB on sc at pm 
IC on sc 
ZGB on 2D 
De in (2+ l)D 

Z G B  On IPC at pas 

0.162 1 0.004 
0.41 10.02 
0.38*0.02 (a) 
0.16+0.02@) 
0.43 10.01 
0.38 10.01 
0.400 1 0.0 IO 
0.45210.008 
0.46010.006 

0.3 17 f 0.002 
0.2310.01 
0.20*0.02 

0.23 10.01 
0.2410.01 
0.23510.010 
0.224 10.0 IO 
0.21410.008 

I8 
PW 
Fw 
Fw 
Fw 

Pw 
17 
16 
19 
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